Other Nematodes – Other locations

- Trichinella spiralis
- Dracunculus medinensis
- Capillaria spp.
- Angiostrongylus spp.
- Thelazia spp.
- Gnathostoma spinigerum

Trichinellosis

Trichinella spiralis

- Man is not the normal host (in domestic and wild animals)
- Worldwide. Not particularly prevalent in tropical countries
- 11 million people infected
- Not soil-transmitted
- Two forms: adult and cystic
- White worm : \bigcirc 3-4 x 0. 06 mm
 - ♂ 1.6 x 0.04 mm

Trichinella spiralis (a) male (b) female

Trichinella spiralis – Life cycle

- Female lives for 30 days and is viviparous
- Eggs (20μm) are in upper uterus. Larvae (100 x 6μm) break out and live free in uterine cavity of the female (1500 larvae/female)
- Larvae emerge 4-7 days after infection, enter lymphatics & blood circulation and reach right heart, lungs arterial circulation striated muscles and encyst
- Ellipsoidal cysts with blunt ends (larvae + capsule of host tissue) lie in parallel to axis of muscle fibers and feed on amino acids of the host. They can remain alive for years

Larvae of *Trichinella* liberated from bear meat

Trichinella spiralis – Life cycle

- Usually calcification after 6 months with death of larva
- When eaten by carnivores, cysts pass stomach and larvae hatch in duodenal/jejunal mucosa

→ enter columnar epithelium → adults in 36h

- From infection to encysting in muscles: 17-21 days
- Transmission by mouth from eating undercooked meat

3 sub-species can infect man:

 T. spiralis spiralis : pigs , foxes temperate regions
 T. spiralis nativa : polar bears Arctic regions
 T. spiralis nelsoni : wild pigs, lions, cheetah Africa, South Europe

Trichinella spiralis – Pathology

Pathology is related to 3 phases:

- Enteric phase:
 - Larva in duodenal/jejunal mucosa
 - Pathology depends on number of larvae
- Migratory/invasive phase:
 - After 5-7 days, females lay larvae in tissues
- Encystment phase:
 - Larvae encyst in striated muscles but can travel to brain and heart muscle where they cannot encyst

Encysted larvae of *Trichinella* sp. in muscle tissue, stained with hematoxylin and eosin

300 x

400 x

Encysted larvae of *Trichinella* sp. in muscle tissue

Trichinella spiralis Changes in muscle capillaries

Trichinella spiralis – Clinical features

- If light : asymptomatic, self-limiting 2-3 w, low mortality
 - Light : ≤ 10 Larvae/g of muscle
 - Moderate: 50-500 L/g
 - Severe: ≥ 1000 L/g
- Incubation period (from ingestion to enteric phase: 7 days; form ingestion to migratory phase: 7-21 days)
- Symptoms depend on no. of larvae/g of muscle

Trichinella spiralis – Clinical features

• Enteric phase:

- Irritation & inflammation of duodenum/jejunum
 - Nausea, vomiting, colic, sweating
 - Skin rash
 - In third of cases, pneumonitis for 5 days
- Encystment phase:
 - Cachexia, oedema, extreme dehydration
 - After 2 months, tenderness of muscles decreases
 - Congestive heart failure & damage to brain possible
 - Jacksonian epilepsy has been described
 - Gram- septicemia & permanent hemiplegia have occurred

Trichinella spiralis – Clinical features

- Migratory phase:
 - Severe myalgia, periorbital oedema & eosinophilia
 - Difficulty in mastication, breathing & swallowing
 - High remittent fever with typhoidal symptoms
 - Splinter hemorrhages under nails & in conjunctivae
 - Blood & albumin in urine
 - Hyper-eosinophilia from day 14, then decreases
 - In severe cases, sub-pleural, gastric & intestinal hemorrhages
 - Rare, myocardial complications
 - In 10-20% of cases, neurological complications

Striated muscle	Brain	Heart
Basophilic degeneration of fibres	Leptomeningitis	Considerable damage
Formation of capsule around L with inflammatory infiltration of lymphocytes & eosinophils	Granulomatous nodules in basal ganglia, medulla & cerebellum	Cell infiltration
Deposit of fat at poles of capsule	Cuffing in cortex	Necrosis
After 6 months, calcification and death of larva		Fibrosis of myocardial tissue

Trichinella spiralis – Immunity

- Good immunity to re-infection but only if the cycle has gone to adult stage
- Mainly cell-mediated immunity but also some humoral

Trichinella spiralis – Differential diagnosis

- Trichinellosis resembles many other conditions:
 - Typhoid, encephalitis, myositis, tetanus, collagen disorders (e.g. rheumatoid arthritis)
- Also resembles tissue stages of schistosomes, hookworms, Strongyloides, etc.

Trichinella spiralis – Diagnosis

By demonstration of L by immunological or molecular methods

- Trichinoscopy: when encystment has started
 - Samples of deltoid, biceps, pectoralis major are digested with 15% pespsin + 1% HCL for hours at 37°c, then filtered, centrifuged → No L/g of muscle
 - Muscle pressed between two slides
 - Antigens detection by:
 - direct immuno-fluorescence
 - microfluorescence
 - ELISA
 - Western Blot test
 - DELFIA (Dissociated Enhanced Lanthemide FluoroImmunoAssay)

Trichinella spiralis – Management

- Mebendazole (10days)
- Thiabendazole , less well tolerated
- In severe infections: prednisolone to control immunological response (Inflammation)

Trichinella spiralis – Epidemiology/Prevention

 Man is not the normal host and is infected only when eating raw/undercooked meat

PREVENTION:

- Cook meat thoroughly
- Meat inspection
- Meat refrigeration to destroy cysts
- Cooking garbage fed to pigs

Keep your pigs healthy and happy!

Other Nematodes – Other locations

- Trichinella spiralis
- Dracunculus medinensis
- Capillaria spp
- Angiostrongylus spp
- Thelazia spp
- Gnathostoma spinigerum

- Also called Guinea worm. Related to filarial worms but not a "true" filaria as the vector is not a Dipteran
- The vector is a water flea (cyclopoid copepod) in freshwater
- Infection by drinking water with vectors containing the worm's larvae
- Adult female can reach 60-80 cm long and about
 2 mm Φ

Dracunculiasis

Epidemiology

- Distribution limited to Sub-Sahel/Sahel Africa
- Use of small sources of water in semi-arid countries
- Seasonal transmission related to rainfall
- Incidence now low (mainly in 15-40 year old)
- No reports in Tanzania but in dogs

Dracunculus medinensis – Vector

Dracunculus medinensis - Life cycle

Dracunculus medinensis – Transmission

Dracunculus - Cycle

- Adult female (60-80 cm L x 2mm Φ) lives in subcutaneous connective tissues of humans
- Can live everywhere in body but mostly in legs/feet, especially in late stages. Female worm is full of L₁
- The female comes close to surface and a blister forms in host's skin. The blister bursts when in contact with water
- Female protrudes anterior end & discharges L₁ (600x20 μm) into water (this goes on for 2-6 weeks) then the female dies
- L₁ is infective in water for 5-6 days. They must be swallowed by the copepod

Dracunculus - Cycle

- In the copepod, the larvae penetrate the gut wall and mould twice in the haemocoele (body cavity) to become infective L₃ (450x14 μm) in 2 weeks
- The infected vectors sink at the bottom of the pond and can be ingested with water.
- In the stomach, the L₃ is liberated, passes to the intestine, connective tissues and becomes an adult.
- Male and female mate about 3 weeks after ingestion. The male dies and the female moves in connective tissues to lower extremities (8-10 months after infection)
- The female begin producing eggs

Dracunculus – Clinical features

- First signs a few days before female pierces the skin
- Blister develops with burning & itching
- On exposure to water, blister ruptures and discharges larvae
- Calcification of worms joints of legs/feet become stiff — crippling
- In 50% cases, ulcer becomes infected with bacteria spreading cellulitis
- Tetanus infection might be a complication

Dracunculus medinensis Clinical features

Dracunculus – Clinical features

- Inflammation makes the worm difficult to extract
- When worm is extricated \longrightarrow the ulcer heals
- If the worm breaks severe inflammatory reaction
- Usually, one worm per year in one patient but can be up to 20 worms
- Some females fail to emerge and die in the body. They are encysted and calcify. This may lead to sterile subcutaneous abscess
- Migration to vital organs (rare) serious pathology

Dracunculus – Diagnosis

- Cannot be diagnosed for 8-10 months of infection
- When female appears **—** see & palpate
- Blister is visible, itching & burning
- Serology is not useful
- Radiology of dead calcified worms is possible
- No evidence of acquired immunity

Calcified dead worms visible at radiography

Dracunculus – Management

- Slow extraction of female worm by rolling it on a small stick (pull slowly each day)
- Be careful not to break the worm!
- Antibiotics & dressing ulcers to avoid bacterial infection
- Tetanus vaccination is recommended
- Surgical removal possible
- No specific drug available
- Niridazole (12.5 mg/kg daily) reduces inflammation and makes extraction easier

Dracunculus

- Can be eliminated (simple cycle, no animal reservoir)
- Improve quality of drinking water (boreholes)
- Health education (filtering, boiling water)
- Chemical water control
- Temephos (Abate) is used as insecticide (kills the copepod)
- Surveillance of infected villages

The end....for now!

Other Nematodes – Other locations

- Trichinella spiralis
- Dracunculus medinensis
- Capillaria spp
- Angiostrongylus spp
- Thelazia spp
- Gnathostoma spinigerum

Capillaria spp: 3 species with potential pathology for man

C. philippinensis	C. hepatica	C. aerophila
Philippines Thailand	Few cases reported	Few cases reported
Infection by ingestion of undercooked, raw fish	Ingestion of embryonated eggs in stool, contaminated food, water, soil	Unsure. Similar to <i>C. hepatica ?</i>
Human intestinal capillariasis	Human hepatic capillariasis Animal parasite, rare in humans	Human pulmonary capillariasis Animal parasite, rare in humans
Abdominal pain, diarrhea, protein-losing enteropathy, cachexia, death	Acute, sub-acute hepatitis, eosinophilia, possible dissemination to other organs. May be fatal	Fever, cough, asthma, pneumonia. May be fatal
Diagnosed by adults, eggs, L in stool or intestinal biopsies In severe infection, eggs, L, adults in faeces	Diagnosed by adults/eggs in liver tissue biopsy	Diagnosed by eggs in lung biopsy

Capillaria philippinensis Life cycle

Capillaria hepatica - Cycle

Capillaria spp

C. philippinensis egg

C. hepatica in liver

Capillariasis - Management

- Mebendazole
- Albendazole

Other Nematodes – Other locations

- Trichinella spiralis
- Dracunculus medinensis
- Capillaria spp
- Angiostrongylus spp
- Thelazia spp
- Gnathostoma spinigerum

Angiostrongyliasis Angiostrongylus spp

- The nematode (roundworm) *Angiostrongylus cantonensis,* the rat lungworm, is the most common cause of human eosinophilic meningitis.
- In addition, Angiostrongylus (Parastrongylus) costaricensis is the causal agent of abdominal, or intestinal, angiostrongyliasis

Distribution:

- A. cantonensis: South-East Asia & Pacific Basin but spreading elsewhere, including Africa
- A. costaricensis: Costa Rica, Young children

Angiostrongylus cantonensis - Cycle

- Adults in pulmonary arteries of rats
- Eggs discharged into bloodstream and lodge as emboli in smaller vessels
- L₁ break through respiratory tract, migrate up the trachea and passes out in faeces
- L₁ enter molluscs (Acatina, Agriolimax, etc.) intermediate hosts
- Two moulds occur around 17th day
- When molluscs are eaten by rats, larvae are freed in stomach
- They pass to ileum, where they enter bloodstream and congregate in the CNS
- The anterior part of cerebrum is the favourite site where third mould takes place (6-7th day) and 4th mould on days 11-13
- Young adults emerge from day 12-14 and spread during the next 2 weeks on the arachnoid surface.
- From day 28-31,, they migrate to lungs via venous system and settle in pulmonary arteries

SAFER · HEALTHIER · PEOPLE

http://www.dpd.cdc.gov/dpdx

Angiostrongylus cantonensis – Clinical features

- Humans can acquire the infection by eating raw or undercooked snails or slugs infected with the parasite
- They may also acquire the infection by eating raw produce that contains a small snail or slug, or part of one
- The disease can also be acquired by ingestion of contaminated or infected paratenic animals (crabs, freshwater shrimps)
- Clinical symptoms of eosinophilic meningitis are caused by the presence of larvae in the brain and by local host reactions.
- Symptoms : severe headaches, nausea, vomiting, neck stiffness, seizures, and neurologic abnormalities.
- Occasionally, ocular invasion occurs.
- Eosinophilia is present in most of cases.
- Most patients recover fully.
- Abdominal angiostrongyliasis mimics appendicitis, with eosinophilia.

Angiostrongylus cantonensis – Diagnosis

- In eosinophilic meningitis the cerebrospinal fluid (CSF) is abnormal (elevated pressure, proteins, and leukocytes; eosinophilia)
- On rare occasions, larvae have been found in the CSF
- In abdominal angiostrongyliasis, eggs and larvae can be identified in the tissues removed at surgery (larvae similar to S. stercoralis but smaller)

Angiostrongylus cantonensis – Management

- No drug with proven efficacy
- Relief of symptoms by analgesics, corticosteroids, removal of CSF at frequent intervals

Angiostrongylus worm. This specimen is approximately 4.25 mm in length and was recovered from vitreous humor of a human patient

Female Angiostrongylus costaricensis in an appendix biopsy, stained with hematoxylin and eosin

IN : Intestine UT: Uterus

E: Eggs

Other Nematodes – Other locations

- Trichinella spiralis
- Dracunculus medinensis
- Capillaria spp
- Angiostrongylus spp
- Gnathostoma spinigerum
- Thelazia spp

Gnathostoma spinigerum

- Adult worms are parasites of both wild & domestic felines and canines
- Widespread in Oriental, Palaeartic, Nearctic regions. Recently imported to Mexico
- Adults live in tumours in the stomach wall of cats & dogs
- Eggs are extruded form lesions and evacuated in faeces to water, where they hatch
- *G. spinigerum* and *G. hispidum* are found in vertebrates
- Human gnathostomiasis is due to migrating immature worms

Gnathostoma – Cycle

- In the natural definitive host (pigs, cats, dogs, wild animals), the adult worms reside in a tumor which they induce in the gastric wall
- Un-embryonated eggs deposited when passed in the faeces
- Eggs become embryonated in water and release first-stage larvae(L₁)
- If ingested by a small crustacean (*Cyclops*, first intermediate host),
 L₁ develop into L₂
- Following ingestion of the Cyclops by a fish, frog, or snake (second intermediate host), L₂ migrate into the flesh and develop into L₃
- When the second intermediate host is ingested by a definitive host,
 L₃ develop into adult parasites in the stomach wall
- Or, the second intermediate host may be ingested by paratenic host (such as birds, snakes, and frogs) in which the L₃ do not develop further but remain infective to the next predator
- Humans are infected by eating undercooked fish/poultry containing L₃, or by drinking water containing infective L₂ in *Cyclops*

Gnathostoma – Clinical features

- The clinical manifestations in human gnathostomiasis are caused by migration of the immature worms (L3s).
- Migration in the subcutaneous tissues causes intermittent, migratory, painful, pruritic swellings (cutaneous larva migrans).
- Migration to other tissues (visceral larva migrans) can result in cough, hematuria, and ocular involvement, with the most serious manifestations eosinophilic meningitis with myeloencephalitis.
- High eosinophilia is present.

Gnathostoma – Diagnostic/Management

- Removal and identification of the worm is both diagnostic and therapeutic.
- Identification of gnathostomiasis is achieved by serology or microscopic observation of the larval worms in tissue sections
- Surgical removal or treatment with Albendazole or lvermectin is recommended.

Other Nematodes – Other locations

- Trichinella spiralis
- Dracunculus medinensis
- Capillaria spp
- Angiostrongylus spp
- Gnathostoma spinigerum
- Thelazia spp

Thelaziasis – Aetiology/Distribution

- Spirurid nematodes of the genus *Thelazia*
- Two species that have been implicated in human infection:
 - T. callipaeda (the Oriental eye worm)
 - T. californiensis (the California eye worm)
- Worldwide. Human infections have been recorded from the United States, China, Russia, India, Japan, and Thailand
- Dogs and other canids, cattle, and horses are the usual definitive hosts for *Thelazia* spp., although other mammals, including cats, lagomorphs, cervids and humans, can also become infected
- Dipteran flies are utilized as intermediate hosts.

Thelaziasis – Aetiology/Distribution

 Adults measure up to 2.0 cm in length. The cuticle has coarse striations, often giving the worms a serrate appearance in profile. The mouth is without lips and the esophagus is short. The tail of the male is recurved and without caudal alae; the tail of the female is bluntly rounded.

Thelazia spp - Cycle

Thelaziasis - transmission

Thelaziasis

Thelaziasis – Clinical features / diagnosis / Treatment

- Clinical Features
 - Adults in the eye cause varying degrees of inflammation and lacrimation.
 - In heavier infections, photophobia, edema, conjunctivitis, and blindness may occur.
- Laboratory diagnosis
 - Identification is made by finding of adult worms in the conjunctival sac
- Treatment
 - Treatment is usually limited to the complete removal of the adult worms from the eye